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ABSTRACT

Markov state models have become popular in the computational biochemistry and biophysics communities as a technique for
identifying stationary and kinetic information of protein dynamics from molecular dynamics simulation data. In this paper, we
extend the applicability of automated Markov state modeling to simulation data of molecular self-assembly and aggregation
by constructing collective coordinates from molecular descriptors that are invariant to permutations of molecular indexing.
Understanding molecular self-assembly is of critical importance if we want to deepen our understanding of neurodegenerative
diseases where the aggregation of misfolded or disordered proteins is thought to be the main culprit. As a proof of principle,
we demonstrate our Markov state model technique on simulations of the KFFE peptide, a subsequence of Alzheimer’s amyloid-f
peptide and one of the smallest peptides known to aggregate into amyloid fibrils in vitro. We investigate the different stages of
aggregation up to tetramerization and show that the Markov state models clearly map out the different aggregation pathways.
Of note is that disordered and f-sheet oligomers do not interconvert, leading to separate pathways for their formation. This
suggests that amyloid aggregation of KFFE occurs via ordered aggregates from the very beginning. The code developed here
is freely available as a Jupyter notebook called TICAgg, which can be used for the automated analysis of any self-assembling
molecular system, protein, or otherwise.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5083915

I. INTRODUCTION

Molecular dynamics (MD) simulations have become a fun-
damental tool for understanding the behavior of both biolog-
ical and non-biological molecules at full atomic resolution.’
However, extracting useful information from the increasing
amount of MD data generated by powerful, state-of-the-
art supercomputers is a big data challenge, which neces-
sitates sophisticated post-processing techniques. Markov
state models (MSMs) have recently gained traction in the

computational biochemistry and physics community as a
technique that can help us do precisely this. MSMs are net-
work models that encode the system dynamics in a states-
and-rates format; i.e., the molecular system at a given instant
can exist in one amongst many possible states and it has
a fixed probability of transitioning to other states, including
itself, within a particular time interval. Notably, MSMs can be
useful and versatile as a data analysis tool: they can be used
for calculating quantities of interest that can be compared
against experimental observables,?-> quantifying uncertainties
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in predictions,®” gaining an intuitive understanding of the sys-
tem,®? driving efficient simulations by combining them with
adaptive sampling,'® and utilizing data from multiple short
trajectories.' .12

In the past few years, great progress has been made
toward automating the generation of MSMs. The release of
user-friendly MSM libraries like MSMbuilder'* and PYEMMA'#
has popularized MSMs amongst practitioners as a quick, unbi-
ased, and informative post-processing technique for MD data.
MSMs have been used to analyze a diverse range of biophysical
problems including protein folding,®'" protein loop motion,'>
allosteric regulation,'® protein-ligand association,'” protein-
protein association,’®'? and monomer addition to amyloid
fibrils.?® However, a naive application of the typical automated
MSM workflow to simulations of molecular self-assembly or
aggregation would cause problems in the collective coordi-
nate construction. The source of this problem lies in the exis-
tence of degenerate states in such simulations, i.e., identical
oligomer conformations differing only by permutations of
chemically identical molecules.?! Since a priori knowledge of
a system’s reaction coordinates is typically unavailable, a cru-
cial prerequisite for state decomposition in the automated
MSM workflow is the construction of kinetically relevant col-
lective coordinates from the data. This is typically performed
by applying dimension reduction techniques such as time-
lagged independent component analysis?? (TICA) to generic
internal coordinates such as interatomic distances.?*>2% This
approach suits the philosophy of MSM automation because
not only do manually chosen reaction coordinates require
specialized knowledge about the system and user interven-
tion, but in complicated free energy landscapes, they can often
capture a limited amount of information.2> However, simply
applying this dimension reduction to intramolecular or inter-
molecular atomic distances in self-assembling systems leads
to chemically identical, degenerate states occupying differ-
ent positions in the free energy landscape. In this paper, we
overcome this issue by introducing a modified TICA called
TICAgg where the characterization of a molecule is invariant
to the molecular indexing and thus immune to the degeneracy
problem.

Molecular self-assembly or aggregation has received
broad attention in the MD community because of its scien-
tific relevance.?6-29 Pathological protein aggregation is a self-
assembly problem that has received a lot of scrutiny from
computational scientists as the aggregation of misfolded pro-
teins is thought to be involved in the disease pathogenesis for
diverse disorders, including Alzheimer’s disease, Creutzfeldt-
Jakob disease, Parkinson’s disease, Huntington’s disease, and
type II diabetes.>>3" The end product of this aggregation
process is usually fibrils highly enriched in f-sheet content,
termed amyloids. However, there is mounting evidence sug-
gesting that it is not these end-stage amyloid fibrils but
smaller, soluble oligomers formed at an earlier stage in the
amyloid cascade that are principally responsible for the patho-
genesis.>?>> However, due to their high aggregation propen-
sity and polydispersity, the preparation of appropriate samples
of amyloid oligomers for high-resolution structural methods
has proven to be difficult.>¢ Modeling techniques such as MD
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simulations can help elucidate the mechanism of oligomer for-
mation and identify metastable oligomer species” that can
be new targets for the design of aggregation inhibitors.>®
Molecular self-assembly is of interest not just because of
its role in disease: more often than not, molecular aggre-
gates play important functional roles in biology. MD studies
of such functional aggregates include simulations of bile salt
aggregates which facilitate the metabolism of triglycerides,*°
a simplified model of virus capsid assembly,*° coarse-grained
MD simulations of the self-assembly of homotetrameric M2
channel protein from influenza A4’ a minimal MD model
of the formation of fibrin-like filament bundles,*? simula-
tions of aggregation and vesiculation of membrane pro-
teins by curvature-mediated interactions,**> and atomistic MD
simulations of functional amyloid formation.“* Nanotechnol-
ogists who seek to mimic nature in their designs and uti-
lize self-assembly to create complex, useful materials have
also turned to MD simulations as a possible source of design
principles.“>

Our study is not the first to construct MSMs for com-
putational simulations of molecular self-assembly. However,
previous work often did not include atomistic detail and relied
on manual, coarse state decompositions where oligomers
were differentiated based on distance cutoffs,*647 undirected
graphs,“® or asphericity parameters of aggregates.*> Atom-
istic details were indeed considered in a recent study of
the dimerization of the amyloid-f(1-40) peptide>° where the
authors extended principal component analysis (PCA) based
clustering to resolve the degeneracy problem by retaining
only the minimum of permutable inter-residue distances for
constructing MSMs. While this approach works well for a
dimer, it is unlikely to generalize to larger oligomers and
systems composed of monomers and oligomers of different
sizes, where retaining only the minimum of many permutable
distances would disregard most of the data. Another possi-
ble approach would be the usage of atom-centric symme-
try functions which are used in machine learning approaches
to computational chemistry for taking into account the per-
mutation of like atoms.>' However, the evaluation of a large
number of these functions for every frame of an MD tra-
jectory would be cost-prohibitive. Moreover, the collective
coordinates obtained from such an approach might also be
hard to interpret. Our molecule-agnostic approach to Markov
state modeling circumvents the degeneracy issue in dimen-
sion reduction, considers both inter- and intra-molecular
atomistic details to characterize oligomers, and is broadly
applicable to all varieties of self-assembly simulations: systems
can contain any number of monomers, multiple oligomer-
forming species, or even both oligomeric and non-oligomeric
chemical species. Our publicly available Jupyter notebook
TICAgg thus reduces the effort of analyzing aggregation
simulations.

As a proof of concept, we apply our TICAagg-based
Markov state modeling to study the aggregation of the KFFE
peptide, a sequence derived from Alzheimer’s amyloid-ff pep-
tide known to aggregate on its own into amyloid fibrils.5?
The motivation for studying short amyloidogenic protein
fragments stems from the hypothesis that their aggregation
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pathways will capture the essential features of those of their
parent proteins.>®> The tendency of KFFE to aggregate is a
result of the hydrophobicity and p-sheet propensity of the two
phenylalanine residues in the peptide core>* and the oppo-
sitely charged lysine and glutamate residues at the two ends
attracting each other. This causes KFFE peptides to preferen-
tially line up against each other in an antiparallel fashion so
that they can form salt bridges as well as reduce the exposure
of hydrophobic residues to the solvent.>> The self-assembly
of this peptide has already been studied using MD simula-
tions that employed either a coarse-grained description of
the peptide,>-% an atomistic model in implicit solvent,>° or
explicit solvent.®® In the current work, KFFE is our compu-
tationally cheap minimal and already well-studied model for
more biologically relevant aggregating proteins in order to
demonstrate the effectiveness of our Markov state modeling
technique.

Il. METHODS

A. Overview of the automated Markov
state modeling workflow

Here, we briefly introduce Markov state modeling; for a
more thorough description of the theory underlying the cal-
culation of MSMs from MD data, the reader is referred to
some recent review papers.6'-63 The typical MSM analysis is
initiated by defining molecular descriptors or “features” (e.g.,
distances between atoms, dihedral angles, or contacts), from
which collective coordinates will be constructed. These fea-
tures are then computed for each frame in the simulation
trajectories, thus transforming the Cartesian coordinate tra-
jectories into feature vectors. The next step is to conduct
a linear transformation on these feature vectors for dimen-
sion reduction using TICA,?*2% which can identify a maxi-
mally slow subspace from the feature space by maximizing
the autocorrelation of the reduced collective coordinates.®*
TICA can capture the slow, chemically relevant transitions
in our system and is therefore preferable to the more com-
monly used PCA for the construction of kinetic models since
the latter maximizes the variance in the reduced coordinates
but pays no importance to kinetic information. Only the com-
ponents corresponding to the largest autocorrelations are
retained.

After obtaining a convenient low-dimensional represen-
tation of our data, we use k-means clustering®> to decom-
pose the free energy landscape into hundreds of discrete
“microstates” such that each frame in our trajectories can
be assigned to one of these microstates. The discretized tra-
jectories thus obtained are used to estimate an MSM of the
microstates. This model can be used to calculate quantities
of interest; however, it is too granular to provide a simple,
intuitive picture of the system dynamics. That is achieved by
coarse-graining the MSM into a Hidden Markov Model (HMM)
with a few metastable states, using robust Perron cluster anal-
ysis®® (PCCA+). PCCA+ is a fuzzy version of the spectral algo-
rithm for partitioning graphs that assigns each microstate
a probability of belonging to a metastable macrostate.
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Finally, whether our model satisfies the Markovian assump-
tions can be verified with a Chapman-Kolmogorov test. The
MSM workflow is graphically summarized as a flowchart in
Fig. 1.

In this work, the Markov state models were built with
a Jupyter notebook using PYEMMA.'* The mdtraj library®”
was employed for handling protein coordinates, and the
Jupyter widget nglview was used to integrate structural visu-
alization into the notebook, enabling a smooth modeling
workflow.

B. Modifying dimension reduction to deal
with degeneracy in self-assembly

As discussed previously, the degeneracy of oligomeric
states hinders the straightforward application of dimension
reduction to inter-atomic distances of such systems. This
problem is visualized in Fig. 2 for a toy system containing
two identical molecules with four atoms each. The two dis-
tances shown by arrows are an example of a pair of per-
mutable distances, i.e., distances that switch places if the
two molecules are permuted. If we naively used these two
distance values as our feature vectors and fed them into
TICA, it might happen that at some later point of time in
the simulations, these two chemically identical molecules
switch positions. In that case, these distances will also
switch their values. From a physicochemical point of view,
the two conformations are equivalent since the molecules
are indistinguishable. However, due to our choice of inter-
atom distance-based features, these degenerate configura-
tions would be represented in the feature vectors by different
pairs of numbers, which differ by a permutation and, there-
fore, after applying TICA, by different points in the free energy
landscape.

To avoid this, we use features that are invariant to molec-
ular indexing as molecular indices of copies of the same

f—» Load topology, trajectory and define features

Run more Choose reaction coordinates by reducing
simulations dimensionality of feature vector with TICA

v

Define microstates by clustering in TICA space

v

Discretize trajectories and
estimate transition matrix

v

Choose lagtime and validate the model

v

Coarse-grain to get Hidden Markov Model

FIG. 1. The workflow for building MSMs from MD trajectories.
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FIG. 2. Two chemically identical molecules switching positions does not lead to
a physicochemical change in the system. However, due to the indexing of the
molecules during a simulation, this leads to a permutation of the molecular descrip-
tors as indicated here for the inter-atom distances d3 and ds . Without consid-
ering the possibility of permutation, the two identical dimers shown left and right
would be identified as different conformations as d 3 and d3» exchange with each
other upon permutation of the two molecules. We resolve this problem by identi-
fying do3 and d3 2 as permutable distances and sorting them before processing
them by TICA. In the example shown here, this would imply that the distances are
passed in the order (d3 2, d2 3) to TICA for the dimer shown on the left and as (d2 3,
d32) for the one on the right.

molecule in self-assembly simulations are essentially artifi-
cial. Our approach is to sort each set of permutable distances
and define these sorted distance values as our feature vector,
which we then feed into TICA. This removes the dependence
of our features on the molecular indexing and makes them
permutation-invariant. The sorting procedure can be applied
to both intra- and inter-molecular distances for an oligomeric
system. The resulting TICA approach is called TICAgg, which is
publicly available at https://github.com /loswald /TICAgg as
a Python notebook. The TICAgg notebook is also capable of
handling systems with more than one species of oligomer-
forming molecules. In these general cases, the user needs
to define lists of permutable sets of atoms and the sort-
ing procedure is handled accordingly. It should be further
noted that our sorted TICA dimension reduction method is
not only capable of handling degeneracies arising from mul-
tiple monomers of the same molecule but also those due to
internal symmetries of the molecule. Finally, it is also pos-
sible in TICAgg to only retain the k smallest values in every
set of permutable distances, should the system become too
large and the TICA calculations become too expensive. The
basic idea of TICAgg is illustrated in the simplified pseudocode
below:
Input:
coordinates of atoms for N trajectory frames
a list of k permutable sets containing m atoms each:
{{a11, ao1, ..., amd}, {a12, an, ..., ano}, ..., {21k, ax,
.., amt} (for an oligomeric system as in our study, k
is the oligomer size, m is the number of atoms in each
monomer whose coordinates are used for the feature vec-
tor, and the indexing is consistent such that a;; from
monomer ¢ is chemically the same atom as a;, from mono-
mer 7)
Output:
matrix D consisting of feature vectors to be used as
input for the dimension reduction algorithm
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Algorithm:
initialize matrix Dintra for sorted intra-set distances
for each frame f =1, ..., N:

initialize vector for distances Diptra,f
for each pair (%, j) of atoms:
for each set p = 1, ..., k:
compute distance between (aip, ajp)
sort the distances
append the sorted distances to Diptra,f
append assembled vector Diptra,y as the last row of

D intra
initialize matrix Dipter for sorted inter-set distances
for each frame f =1, ..., N:

initialize vector for distances Dipter,f
for each pair (%, j) of atoms:
for each pair (g, ) of sets:
compute distance between (a;q, ajr)
sort the distances
append the sorted distances to Dipter,f
append assembled vector Dipter,; as the last row of
Dinter
concatenate Diptra,f and Dipter,yf columnwise to obtain D
A potential weak point of our sorting strategy could
be that it might be sensitive to perturbations of a trajec-
tory, which would lead to discontinuities in the evolution
of the feature vector by changing the order of a list. How-
ever, the order of distances can only be permutated when
the permutable distances are extremely close in value. There-
fore, even if the order of distances is reversed, this can only
occur due to a small perturbation, which does not lead to
any or substantial changes in the actual list of permutation-
invariant distances that we feed to TICA. Thus, a slightly
perturbed trajectory would be mapped to a path that is
very close to the original trajectory in the transformed fea-
ture space, keeping the discontinuity impact negligible. For
studying KFFE, we used interatomic distances between the
backbone atoms of the peptide for constructing both inter-
molecular and intramolecular features. As it has been noted®®
that backbone dihedral angles are often better suited for
describing the conformational ensemble of monomeric pep-
tides compared to interatomic distances, we tested the effect
of using dihedral angles on Markov state modeling for the
KFFE monomer. The resulting HMM was identical to the
one obtained with Cartesian coordinates. However, should
for peptides larger than KFFE dihedral angles become more
appropriate for describing their dynamics, the same sort-
ing approach could be applied to the sines and cosines of
dihedral angles to construct the intramolecular features. In
a recent opinion piece,®? it was argued that TICA may not
always be superior to PCA for constructing MSMs since
the slowest motions are not necessarily the most impor-
tant ones when describing conformational transitions. To this
end, we tested for the KFFE dimer whether we would ben-
efit from using PCA for constructing HMMs for the aggre-
gation of this peptide. However, we found that, unlike the
TICA projections, the dynamics of KFFE dimerization is not
well-resolved in the first two principal components. Nonethe-
less, it should be noted that for our innovation, which is the
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construction of permutation-invariant input features, there
is no restriction imposed on the choice of dimension reduc-
tion algorithm. Therefore, in principle, our sorting approach
pairs perfectly well with any sensible dimension reduction
method.

C. Molecular dynamics simulations

Oligomerization of the KFFE peptide was investigated
stepwise, starting from simulations of the monomer and going
up to tetramers. The starting conformations of the trajecto-
ries at each step were taken from the metastable states dis-
covered by the Markov state modeling performed during the
previous step; i.e., simulations of the dimer were started from
the metastable states of the monomer, the trimer simulations
were started from metastable dimer plus monomer states, and
the tetramer simulations were initiated from dimer plus dimer
states as well as trimer plus monomer states. We proceed in
stages like this as we wish to obtain equilibrated structures
for each oligomer size, including the sampling of encounter
complexes. This way we aim to circumvent the problem that
in MD simulations of peptide aggregation the peptide con-
centration is usually 2-3 orders magnitude higher than under
in vitro conditions.?® The internal dynamics of a peptide or
an oligomer is always in competition with their aggregation
with other peptides and oligomers, so if we introduce peptides
at a high concentration in our simulation box, the peptides
could all aggregate together in a clump before the different
species (monomer, dimer, trimer, etc.) have had time to relax.
This is in contrast to a more dilute solution where collisions
are much less frequent, giving rise to encounter times on
the millisecond to second time scale.?® As the computational
length- and time scale limitations do not allow the modeling of
peptide aggregation at concentrations found under in vitro
let alone in vivo conditions, we instead assume that diffusion-
limited encounter complex formation has already taken place
and concentrate on simulating the transition from encounter
complexes to stable oligomer states.

The monomer simulations were started with the peptide
in extended conformation. The system was introduced in a
dodecahedral box, large enough so that the distance between
the peptide and the box walls is 1.2 nm. The system was then
solvated and minimized using the steepest descent algorithm.
No ions were introduced to simulate the environmental con-
ditions at which KFFE aggregation is maximized.>? The system
was then equilibrated using a 0.1-ns NVT and a 0.1-ns NPT sim-
ulation. Then, five production runs of 2 us were performed.
During the production runs, the temperature was kept con-
stant at 310 K using the Nosé-Hoover algorithm”° with a time
constant of 0.5 ps. Pressure was kept constant at 1 bar using
the Parrinello-Rahman barostat”' with a compressibility of 4.5
x 107° bar~! and a time constant of 2 ps. Protein bonds were
constrained using the LINCS (LINear Constraint Solver) algo-
rithm72? with an order of 2 and the internal water dynamics
was constrained using the SETTLE algorithm.”® The time step
for integrating the equations of motion was 2 fs. Electrostatic
interactions were calculated using the particle mesh Ewald
algorithm with a short-range cutoff of 1 nm and a Fourier
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spacing of 0.12 nm. Van der Waals interactions were calcu-
lated with a cutoff of 1 nm. Simulations were performed using
the AMBER99SB*-ILDN force field’# with the TIP4P-Ew water
model,”> a combination that has been shown to model accu-
rately intrinsically disordered proteins’¢ and protein aggrega-
tion.”7.78 Simulations for dimers, trimers, and tetramers were
performed with the same parameters, but with dodecahedral
boxes of 5.0, 5.0, 5.6, and 6.0 nm edge length, respectively. For
the dimer, we simulated 10 trajectories of 2 us each and for
the trimer and tetramer, 10 trajectories of 3 us each, amount-
ing to 90 us calculated simulation time spent on KFFE. All
simulations were performed using Gromacs 5.1.2.7°

Ill. RESULTS AND DISCUSSION

We use the results for the KFFE monomer to guide
through the information obtained at each step of the MSM
procedure, whereas we will concentrate on the final MSMs for
the oligomers. We used the sorted distances between back-
bone atoms as described above as input to the TICA dimension
reduction for each system. The first two collective coordinates
were kept for the subsequent Markov state modelling, which
we found to be sufficient for describing the dynamics of the
monomer and also oligomers.

A. Dynamics of the KFFE monomer

We first study the dynamics of the KFFE monomer. The
free energy landscape in [ig. 3(a) shows that the monomer
adopts mainly three conformations corresponding to three
minima. The next step in the MSM procedure is the k-
means clustering producing 250 microstates for the monomer,
which are indicated as dots representing the centroids of
the microstates, while their colors are indicative of the free
energy minimum they have the highest probability of belong-
ing to. The microstate-based MSM is then used to determine
the lagtime for calculating the HMM based on the conver-
gence of the implied time scales for the slowest processes.
The latter can be directly determined from the Markov model
eigenvalues for different lagtimes. The results for this pro-
cedure are shown in Fig. 3(b), revealing that the slowest
processes converge for a lagtime of 250 time steps corre-
sponding to 2.5 ns, which was chosen for coarse-graining
the MSM into a HMM. The transition matrix of the resulting
3-macrostate HMM is represented as a network diagram in
Fig. 3(c), where the sizes of the circles represent the relative
contribution of each macrostate to the stationary distribu-
tion and the thickness of each arrow is proportional to the
probability of the transition it represents. The Markovianity of
this MSM was checked using the Chapman-Kolmogorov test.
The results of this test in Fig. 3(d) reveal that Markovianity is
guaranteed.

From the analysis of these data, we find that the KFFE
monomer adopts three main conformations: a f-strand, a
tight U, and an extended U conformation, which co-exist in
a dynamic equilibrium. The U states are stabilized by electro-
static interactions between the oppositely charged glutamate
and lysine residues, which are in competition with the intrin-
sic f-strand promoting tendencies of the two phenylalanine
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FIG. 3. Markov state model results for the KFFE monomer. (a) Free energy (in kg T, see the color scale on the right) plotted along the first two TICA coordinates. The
microstates as obtained from k-means clustering are shown as dots using different colors to indicate their assignment to one of the three free energy minima. (b) Convergence
of the slowest implied time scales with increasing lagtime, based on which 250 time steps were chosen as lagtime for coarse-graining the MSM. (c) A network diagram of
the HMM obtained for the KFFE monomer, which is overlaid on the corresponding free energy landscape. The circles represent the stable macrostates, where the area of
the circles correlates with the population of the corresponding state. The arrows indicate transitions between the states, with the line thickness correlating with the transition
probability. Representative KFFE structures (K: blue, F: yellow, E: red) are presented next to the corresponding node: a tight U (state 1), an extended U (state 2), and a
{-strand (state 3). (d) The Chapman-Kolmogorov test for the transitions between the three HMM states. The transition probabilities estimated from the simulation data are

shown in black, and the ones predicted by the HMM model are shown in blue.

residues. The low free energy barriers mean that the slowest
transition in the MSM corresponds to a time scale of ~38 ns,
which is a typical time scale for conformational transitions in
a small peptide.®® The p-strand has the lowest free energy
and dominates with a 62% probability the stationary distri-
bution. The extended U state has intermediate stability, with
its free energy ~1 kcal/mol above the f-strand and occupies

28% of the stationary distribution. Finally, the tight U state
is the least stable and has a 10% presence in the station-
ary distribution. Curiously, the two U-shaped states tend not
to directly interconvert and the p-state acts as an interme-
diate between these, which is evident from the thickness of
the arrows between the states in the HMM model shown in
Fig. 3(c).

J. Chem. Phys. 150, 115101 (2019); doi: 10.1063/1.5083915
Published under license by AIP Publishing

150, 115101-6


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

Our results for the monomer are in agreement with
experimental observations®? from circular dichroism spec-
troscopy of freshly dissolved (and presumably monomeric)
KFFE, which revealed the co-existence of a f-strand struc-
ture with random structures. Furthermore, our findings are
in qualitative agreement with previous MD simulations of
KFFE,>55960 which usually also produced the p-strand, tight,
and extended U conformations as the three stable structures
for the KFFE monomer. However, depending on the protein
force field and solvent model used, different orders of stability
of these three conformations were identified, which was dis-
cussed in detail by Strodel and Wales.>® They found that com-
bining Charmm19' with either the generalized Born model
GB182 or the empirical implicit solvent model EEF1%3 favors
the p-strand over the two U conformations, while the other
two Charmm /implicit solvent model combinations prefer one
of the two U conformations. It was argued that this might
result from the overstabilization of electrostatic interactions
between amino acid residues sometimes found in implicit
solvent. Though also Bellesia and Shea, who employed an
explicit water model in conjunction with OPLS /AA, identified
the extended U as more stable than the p-strand. They also
observed only rare transitions from either of the U-shaped
conformations to the B-strand, while the HMM in Fig. 3(c)
clearly shows that with AMBER99SB*~ILDN and the TIP4P-Ew
water model the preferred interconversion occurs from the

u+u
onomers

U+pB
monomers
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extended U to the B-strand. Nonetheless, our studies agree on
having identified the same three conformations that the KFFE
monomer can adopt.

B. Dynamics of KFFE dimerization

The simulations of the KFFE dimer reveal that the three
monomeric conformations aggregate in almost every possible
combination, giving rise to numerous possible dimer config-
urations, which has already been observed previously.>>59:60
The dimers themselves are not very persistent, and many
aggregation and dissociation events are observed in our simu-
lations. This is surprising since a common criticism of force
fields is that they overestimate protein-protein interaction
energies and thus overstabilize protein aggregation.”®%“ The
frequent association and dissociation events in combination
with the many possible combination patterns of monomer
conformations lead to a complex free energy landscape with
a diversity of aggregates, making these simulations a chal-
lenging testbed for our automatic MSM approach. The HMMs
generated by TICAgg are successful at providing us with
a clear look into the dynamics of the system; they iden-
tify the metastable states and their interconversion rates
along the aggregation pathway. The HMM for the dimer is
shown in Fig. 4, while the free energy landscape with the
microstates from k-means clustering, convergence of the

FIG. 4. A network diagram of the HMM
model obtained for the KFFE dimer,
which is overlaid on the corresponding
free energy landscape. States 2, 3, 6,
and 7 represent dimeric states, while all
other states are different combinations of
monomers. Representative structures of
the dimers are shown. An explanation of
the colors is given in Fig. 3.
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slowest implied time scale and the results from the Chapman-
Kolmogorov test are provided in the supplementary material
(Figs. S1-S3).

From the dimer HMM represented by its network dia-
gram in Fig. 4, one can see that the two flavors of f-p dimers
are the most stable dimers (states 6 and 7, 7% and 8% contri-
bution to the stationary distribution), followed by the mixed
U-p dimer (state 3, 4%) and the U-U dimer (state 2, 1%). Each
dimer is kinetically closest to the corresponding dissociated
monomers, which dominate the configurational space with an
overall population of 80%. In other words, the rate of dis-
sociation is considerably larger than the rate of association
for all dimers, which is directly visible from the thickness
of the arrows between the monomeric and dimeric states.
Consequently, the dimers are rather unstable and frequently
dissociate into their respective monomers, which can change
conformations rapidly and re-associate into a different kind
of dimer. The network diagram also indicates that there
are no direct interconversions between the different dimeric
species, i.e., dimers are only formed via monomer assembly.
As expected, the stable dimeric species detected in our sim-
ulations are aligned in an anti-parallel fashion (Fig. 4), result-
ing from the electrostatic attraction between the oppositely
charged termini and the hydrophobic interactions between
the cores. It should be noted that even though the $-strands
are aligned antiparallel in the p-f dimers, proper p-sheets
were not formed due to the lack of sufficient hydrogen bonds
(H-bonds) between the backbones of the two peptides. In
the previous simulations of the KFFE dimer,>55960 a per-
fect p-sheet was also not observed apart from the simulation
that employed the Charmm19 /EEF1 force field /solvent model
combination.

C. Aggregation into larger KFFE oligomers

The results for the KFFE trimer and tetramer are similar
to those for the dimer. During the MD simulations, numerous
dissociation and re-association events were sampled. Similar
to the dimer, a large number of combinations of U confor-
mations, and B-strands can aggregate to form a variety of
different trimers or tetramers, which are, however, not very
stable. The detailed results for the trimer and tetramer are vis-
ible in the supplementary material (Figs. S4-S11). They confirm
the findings obtained for the dimer as the direct interconver-
sion between different trimer or tetramer configurations seem
to not be preferred. Instead, the addition of a monomer or
dimer to the corresponding lower oligomer seems to be the
dominant aggregation mechanism. The largest time scales for
the dimer, trimer, and tetramer HMMs are about 50, 300, and
400 ns, respectively. Although there are hardly any large free
energy barriers between adjacent macrostates in the energy
landscape of KFFE oligomerization, the increasing number
of states with the introduction of further monomeric units
results in slower transitions between (non-adjacent) states.
Among the trimers, some degree of metastability is achieved
by the p-p-U trimers (states 1, 2 and 7 in Fig. S7), which result
from the assembly of a f-p dimer and a U monomer. Other
trimers of notable stability are f-f-p and U-U-U trimers (state

ARTICLE scitation.org/journalljcp

3 in Fig. S7 and state 9 in Fig. Sl11, respectively). While all
the tetramers tend to disintegrate quickly, the two tetramers
with p-strands, one consisting of four -strands (state 11 in
Fig. S11) and the other one comprising two p-strands and two
U-shaped units (state 8 in Fig. S11), are slightly more persis-
tent than the U-rich tetramers (state 1 in Fig. S11). Similar to
the dimer, no perfect p-sheet formed despite the antiparal-
lel alignment of three or four p-strands in the p-rich trimers
and tetramers. The structures of KFFE dimers, trimers, or
tetramers are yet to be experimentally determined. It is cur-
rently unclear whether these oligomers serve as nuclei for
the further formation of amyloid fibrils or whether they are
only kinetic intermediates. The relevance of these results to
the fibrillization mechanism depends on whether the criti-
cal nucleus is smaller than or equal to four KFFE peptides.
The relative instability of the oligomers and lack of proper -
sheet formation that we observed seem to suggest that the
fibrillization nucleus might actually be larger.

IV. CONCLUSION

A tool to construct automated Markov state models from
MD simulations of molecular self-assembly and aggregation
is presented here. Molecular aggregation is the cause of a
wide-ranging variety of diseases but can also play important
functional roles in our body, and self-assembled nanostruc-
tures have many promising applications. Our PyEMMA-based
Jupyter notebook TICAgg reduces the burden of constructing
a MSM for self-assembly simulations to selecting a handful of
parameters. The main challenge to automation was the degen-
eracy present in an oligomeric system. We solved this problem
during dimension reduction by sorting the inter-atom dis-
tances that are permutable. The modified TICA that we have
developed here can be used as a standalone dimension reduc-
tion technique for the construction of good collective coor-
dinates in systems with degeneracies arising from multiple
identical molecules or symmetry or be combined with MSMs
as we have done.

We tested our technique on extensive simulations of
aggregating KFFE peptides, a small peptide that has been
used in the literature as a minimal model to investigate pro-
tein aggregation.>? Similar to previous atomistic simulation
studies,>559.60 we found that the KFFE monomer has three
metastable configurations: two U shaped states and one -
strand state. These monomeric configurations can assem-
ble in all possible combinations to form a diverse variety
of oligomers. TICAgg successfully identified the metastable
aggregates, and in combination with the calculation of HMMs,
the relevant aggregation pathways were revealed. A schematic
showing the dominant oligomerization pathways starting from
monomers and leading up to tetramers discovered from our
HMMs is shown in Fig. 5. Trimers are formed via the asso-
ciation of a dimer and a monomer, while tetramers evolve
from both a trimer plus a monomer and a dimer plus a dimer.
Especially f-f and U-U dimers contribute to the latter asso-
ciation pathway. The most important conclusion from Fig. 5
is that there is no direct interconversion between different
oligomer configurations of the same aggregate size. This leads
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FIG. 5. A scheme summarizing the major KFFE oligomerization pathways discovered from the HMMs of the monomer (top row), dimer (second row), trimer (third row),
and tetramer (bottom row). No considerable conversions between oligomers of the same size are observed. The major pathways for the different oligomer types occur via
association between monomers and/or smaller oligomers, leading to separate pathways for the formation of 3-sheets (on the left side of the scheme), completely disordered

oligomers (right side), and mixed (3/disordered oligomers (middle).

to different pathways for the formation of -strand oligomers,
which are the most likely fibrillization precursors, and of non-
B-strand oligomers, also known as disordered oligomers. A
common hypothesis in the amyloid field is that aggregation
into amyloid fibrils is initiated by hydrophobic collapse into
disordered aggregates, followed by their structural transition
into ordered B-sheets. However, our results in Fig. 5 seem to
show that this is not the case as the disordered oligomers
do not convert to ordered f-rich oligomers (and vice versa).
The aggregation pathway leading to disordered oligomers can
thus be expected to be off-pathway with respect to amy-
loid aggregation.?® We argued that the hydrophobic collapse
commonly seen in MD simulation studies of amyloid peptide
aggregation is most likely a consequence of the 2-3 orders
higher peptide concentration compared to the in vitro and in
vivo situations, which gets further enhanced by the oversta-
bilization of inter-protein interactions by most force fields.”®
We avoided the concentration problem by studying each
oligomer state individually. The conclusions may be different
for larger peptides such as full-length Af. Thus, future studies

should test whether the separation between the pathways for
aggregation into $-sheets and disordered oligomers holds true
for amyloid peptides other than KFFE.

Further work with TICAgg could be both applied and
methodological. It can be used to study more biologically
relevant peptides, such as Af, or other self-assembling sys-
tems of interest. Recent advances being made in Markov state
modeling can also be incorporated into the tool, such as the
newly developed TRAMMBAR estimator'? that allows building
MSMs from enhanced sampling MD data such as Hamiltonian
replica exchange or novel dimension reduction techniques like
SparseTICA,25 which constructs sparse collective coordinates
that are easier to interpret.

SUPPLEMENTARY MATERIAL

See supplementary material for detailed results obtained
during Markov modeling of the KFFE dimer, trimer, and
tetramer. For each of these oligomers, plots of (i) the free
energy surface including the microstates, (ii) the implied time

J. Chem. Phys. 150, 115101 (2019); doi: 10.1063/1.5083915
Published under license by AIP Publishing

150, 115101-9


https://scitation.org/journal/jcp
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-150-031908

The Journal

of Chemical Physics

scales, (iii) the results from the Chapman-Kolmogorov test,
and (iv) the hidden Markov model with representative confor-
mations for the most stable oligomer states are shown.
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